

GUI Testing and Automation with
Sikuli

Bob Igo, Digital Arc Systems

The Master Plan

● Demonstration
● What is Sikuli?
● Sikuli Basics
● Basic Testing
● Intermediate Testing
● Advanced Testing
● Inherent Limitations

Running a Sikuli Script

● Invocation of Sikuli script, Example1:

sikuli-ide.sh -r
./unlock_emulator_and_run_browser.s
ikuli

Demonstration

Demonstration

How did that work?

● Sikuli can see.
● Sikuli finds on-screen matches with a reference

image
–

● It can then perform any keyboard or mouse
action at or near the matches

– mouseDown(Button.LEFT)

What is Sikuli?

What does Sikuli do, in general?

● It can use any GUI that you can use
– native

– Flash/Silverlight

– cross-platform

● run anywhere, displayed locally
– local program

– via VNC

– inside VMs
● headless or not

– ssh + X11 forwarding
What is Sikuli?

How do you tell it what to do?

● You write Sikuli scripts using its python API
– by hand or in the Sikuli IDE

● You run Sikuli scripts in two ways:
– Click in the IDE.

– sikuli-ide.sh -r
./your_script_name.sikuli

What is Sikuli?

Anatomy of a Sikuli Script:
Example1

Basics: GUI Interaction

Sikuli IDE, Showing Example1

Basics: GUI Interaction

Using the Sikuli IDE

● Left column: Sikuli commands,
coupled with optional image capture

● Most buttons do this:
– help capture a reference image

– insert the image and the Sikuli
command into the script

Basics: Using the IDE

Using the Sikuli IDE

● Right column: Your Sikuli
script, in a special editor

● Use as a text editor
● Left column's buttons inject

code at the cursor

Basics: Using the IDE

Basics: Using the IDE

Questions?

● Next up, some Quirks and Gotchas

Basic Quirks and Gotchas

● Sikuli: awesome, but has rough edges
● IDE is best for rapid prototyping

– not all Sikuli commands are in the IDE's left
column

– python indent issues

– no parser warnings/errors

– no UNDO

– can be unstable

Basics

Basic Quirks and Gotchas

● Sikuli ”files” are actually directories named
scriptname.sikuli, containing your .png
images, the scriptname.py and
scriptname.html

● When loading/saving in the IDE, load/save the
directory name, not scriptname.py

Basics

Basic Quirks and Gotchas

● To run the IDE and load a script in one action:
– sikuli-ide.sh ./scriptname.sikuli

Basics

Automation → Test

● Recall Example1:

Basic Testing

Automation → Test

● Test 1: Trivial conversion to JUnit test:

Basic Testing

Automation → Test

● Select View → Unit Test in Sikuli IDE

Basic Testing

Automation → Test

● Or run like so:
– sikuli-ide.sh -t

./unlock_emulator_and_run_browser_
test.sikuli

Basic Testing

Why JUnit?

● Regular Sikuli script:
– exit code is pass/fail

– if the script fails at any point, no more code is
called

● A JUnit Sikuli script:
– exit code is pass/fail

– adds text detailing the test process, e.g.:

Time: 12.156

OK (1 test)
– if the script fails inside a test, other tests still run

Basic Testing

Test Expansion

● Adding a timing test
● You can import any python module

– e.g.
import time

Basic Testing

Test Expansion

● Test1A: Make it fail if it takes longer than 15
seconds.

Basic Testing

Limitations of Test1A

● Does not play well with other tests (or itself, run
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Basic Testing

Intermediate Testing

● Let's address some of the limitations of Test1A
● Start with setUp() and tearDown()

– addresses first two limitations

Intermediate Testing

Playing Well With Others

● JUnit makes use of setUp() and tearDown()
methods.

– setUp() is called before each test_*() method

– tearDown() is called after each test_*() method

Intermediate Testing

First step: Break
out the setup
behavior into

setUp()

Intermediate Testing

Second step: add
teardown behavior

to tearDown()

Intermediate Testing

Now, We Have Test1B

Intermediate Testing

Limitations of Test1B

● Does not play well with other tests (or itself, run
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Intermediate Testing

Intermediate Testing

● Let's add some branching logic.
● Maybe the emulator is already unlocked

– perhaps another test crashed and wasn't able to
call tearDown()

– we don't want to fail our test because another
test misbehaved

Intermediate Testing

Test1C

● We can use python try/except blocks to know
when Sikuli fails to find an image

Intermediate Testing

Questions?

● Next up, Advanced Testing

Limitations of Test1C

● Does not play well with other tests (or itself, run
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Advanced Testing

More Quirks and Gotchas

● You can import any python module (e.g. time)
using import, but this doesn't work if the
module contains calls to the Sikuli API.

– basic issue is subtle and involves how Sikuli
turns a fairly normal .py script into a Sikuli
script

● We need a workaround to share one Sikuli
script's methods with another one.

Advanced Testing

Sharing Sikuli Script Methods

● Use execfile() to trick Sikuli
● Our scenario

– Let's say we have 100 test scripts that involve
unlocking and re-locking the Android emulator

– for maintenance, setUp() and tearDown() need
to be in one place, not 100 places

Advanced Testing

Test1C → Test1D

● advanced_test_utils.py

● All image names must be full paths

Advanced Testing

Test1C → Test1D

● Warning: The IDE will delete those image files if
you load the previous .py file into Sikuli.

● Once you add full paths to images, keep the
script out of the IDE forever.

Advanced Testing

Test1C → Test1D

● advanced_test_1.py

● It's ok to load this into the IDE. Advanced Testing

Questions?

● Next up, Inherent Sikuli Limitations

Inherent Sikuli Limitations

● Very CPU-intensive
– mitigators: setROI(), wait(s)/sleep(s)

● Can't reliably find transient imagery
– a fixed image in motion

– a frame of a 30fps video

Inherent Limitations

Inherent Sikuli Limitations

● Compared with human testers, unable to report
that something unexpected happened, if
everything expected also happened

● Translucency can make matches difficult

Inherent Limitations

More Quirks and Gotchas

● Sikuli creates and populates a tmplib
directory anywhere you run a Sikuli script

– you'll need to clean up after it

Things I Didn't Cover

● findAll() is useful if you want to test several
GUIs at the same time

● Sikuli provides openApp() and closeApp()
to run and kill processes, but it works strangely
in Linux.

– You're better off writing a wrapper that runs (or
verifies as running) the program you want to
test, then runs the Sikuli script.

● Managing your image file names

Things I Didn't Cover

● Speed issues
– sometimes much slower than human testers

– sometimes much faster than human testers

● writing a wrapper to launch scripts and handle
return values

● setting the match threshold for imagery
– default is 70%

● installing Sikuli

References

● Sikuli Project Home

– http://groups.csail.mit.edu/uid/sikuli/

● Sikuli API reference

– http://sikuli.org/trac/wiki/reference-0.10

● Slides from this and my other talks

– http://bob.igo.name/?s=slides

● Catherine Devlin's Sikuli talk

– http://catherinedevlin.pythoneers.com/presentations/sikuli/sikuli.html

● Sikuli import workaround discussion

– https://answers.launchpad.net/sikuli/+faq/1114

● Sikuli tickets

– https://bugs.launchpad.net/sikuli

● OpenCV

– http://opencv.willowgarage.com/wiki/

http://groups.csail.mit.edu/uid/sikuli/
http://sikuli.org/trac/wiki/reference-0.10
http://bob.igo.name/?s=slides
http://catherinedevlin.pythoneers.com/presentations/sikuli/sikuli.html
https://answers.launchpad.net/sikuli/+faq/1114
https://bugs.launchpad.net/sikuli
http://opencv.willowgarage.com/wiki/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

