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The Master Plan

● Demonstration
● What is Sikuli?
● Sikuli Basics
● Basic Testing
● Intermediate Testing
● Advanced Testing
● Inherent Limitations



  

Running a Sikuli Script

● Invocation of Sikuli script, Example1:

sikuli-ide.sh -r 
./unlock_emulator_and_run_browser.s
ikuli

Demonstration



  

Demonstration



  

How did that work?

● Sikuli can see.
● Sikuli finds on-screen matches with a reference 

image
–

● It can then perform any keyboard or mouse 
action at or near the matches

– mouseDown(Button.LEFT)

What is Sikuli?



  

What does Sikuli do, in general?

● It can use any GUI that you can use
– native

– Flash/Silverlight

– cross-platform

● run anywhere, displayed locally
– local program

– via VNC

– inside VMs
● headless or not

– ssh + X11 forwarding
What is Sikuli?



  

How do you tell it what to do?

● You write Sikuli scripts using its python API
– by hand or in the Sikuli IDE

● You run Sikuli scripts in two ways:
– Click         in the IDE.

– sikuli-ide.sh -r 
./your_script_name.sikuli

What is Sikuli?



  

Anatomy of a Sikuli Script: 
Example1

Basics: GUI Interaction



  

Sikuli IDE, Showing Example1

Basics: GUI Interaction



  

Using the Sikuli IDE

● Left column: Sikuli commands, 
coupled with optional image capture

● Most buttons do this:
– help capture a reference image

– insert the image and the Sikuli 
command into the script

Basics: Using the IDE



  

Using the Sikuli IDE

● Right column: Your Sikuli 
script, in a special editor

● Use as a text editor
● Left column's buttons inject 

code at the cursor

Basics: Using the IDE



  

Basics: Using the IDE



  

Questions?

● Next up, some Quirks and Gotchas



  

Basic Quirks and Gotchas

● Sikuli: awesome, but has rough edges
● IDE is best for rapid prototyping

– not all Sikuli commands are in the IDE's left 
column

– python indent issues

– no parser warnings/errors

– no UNDO

– can be unstable

Basics



  

Basic Quirks and Gotchas

● Sikuli ”files” are actually directories named 
scriptname.sikuli, containing your .png 
images, the scriptname.py and 
scriptname.html

● When loading/saving in the IDE, load/save the 
directory name, not scriptname.py

Basics



  

Basic Quirks and Gotchas

● To run the IDE and load a script in one action:
– sikuli-ide.sh ./scriptname.sikuli

Basics



  

Automation → Test

● Recall Example1:

Basic Testing



  

Automation → Test

● Test 1: Trivial conversion to JUnit test:

Basic Testing



  

Automation → Test

● Select View → Unit Test in Sikuli IDE

Basic Testing



  

Automation → Test

● Or run like so:
– sikuli-ide.sh -t 

./unlock_emulator_and_run_browser_
test.sikuli

Basic Testing



  

Why JUnit?

● Regular Sikuli script:
– exit code is pass/fail

– if the script fails at any point, no more code is 
called

● A JUnit Sikuli script:
– exit code is pass/fail

– adds text detailing the test process, e.g.:

Time: 12.156

OK (1 test)
– if the script fails inside a test, other tests still run

Basic Testing



  

Test Expansion

● Adding a timing test
● You can import any python module

– e.g.
import time

Basic Testing



  

Test Expansion

● Test1A: Make it fail if it takes longer than 15 
seconds.

Basic Testing



  

Limitations of Test1A

● Does not play well with other tests (or itself, run 
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Basic Testing



  

Intermediate Testing

● Let's address some of the limitations of Test1A
● Start with setUp() and tearDown()

– addresses first two limitations

Intermediate Testing



  

Playing Well With Others

● JUnit makes use of setUp() and tearDown() 
methods.

– setUp() is called before each test_*() method

– tearDown() is called after each test_*() method

Intermediate Testing



  

First step: Break
out the setup
behavior into

setUp()

Intermediate Testing



  

Second step: add
teardown behavior

to tearDown()

Intermediate Testing



  

Now, We Have Test1B

Intermediate Testing



  

Limitations of Test1B

● Does not play well with other tests (or itself, run 
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Intermediate Testing



  

Intermediate Testing

● Let's add some branching logic.
● Maybe the emulator is already unlocked

– perhaps another test crashed and wasn't able to 
call tearDown()

– we don't want to fail our test because another 
test misbehaved

Intermediate Testing



  

Test1C

● We can use python try/except blocks to know 
when Sikuli fails to find an image

Intermediate Testing



  

Questions?

● Next up, Advanced Testing



  

Limitations of Test1C

● Does not play well with other tests (or itself, run 
more than once)

● Monolithic
● No branching logic
● Does not share code with other tests

Advanced Testing



  

More Quirks and Gotchas

● You can import any python module (e.g. time) 
using import, but this doesn't work if the 
module contains calls to the Sikuli API.

– basic issue is subtle and involves how Sikuli 
turns a fairly normal .py script into a Sikuli 
script

● We need a workaround to share one Sikuli 
script's methods with another one.

Advanced Testing



  

Sharing Sikuli Script Methods

● Use execfile() to trick Sikuli
● Our scenario

– Let's say we have 100 test scripts that involve 
unlocking and re-locking the Android emulator

– for maintenance, setUp() and tearDown() need 
to be in one place, not 100 places

Advanced Testing



  

Test1C → Test1D

● advanced_test_utils.py

● All image names must be full paths

Advanced Testing



  

Test1C → Test1D

● Warning: The IDE will delete those image files if 
you load the previous .py file into Sikuli.

● Once you add full paths to images, keep the 
script out of the IDE forever.

Advanced Testing



  

Test1C → Test1D

● advanced_test_1.py

● It's ok to load this into the IDE. Advanced Testing



  

Questions?

● Next up, Inherent Sikuli Limitations



  

Inherent Sikuli Limitations

● Very CPU-intensive
– mitigators: setROI(), wait(s)/sleep(s)

● Can't reliably find transient imagery
– a fixed image in motion

– a frame of a 30fps video

Inherent Limitations



  

Inherent Sikuli Limitations

● Compared with human testers, unable to report 
that something unexpected happened, if 
everything expected also happened

● Translucency can make matches difficult

Inherent Limitations



  

More Quirks and Gotchas

● Sikuli creates and populates a tmplib 
directory anywhere you run a Sikuli script

– you'll need to clean up after it



  

Things I Didn't Cover

● findAll() is useful if you want to test several 
GUIs at the same time

● Sikuli provides openApp() and closeApp() 
to run and kill processes, but it works strangely 
in Linux.

– You're better off writing a wrapper that runs (or 
verifies as running) the program you want to 
test, then runs the Sikuli script.

● Managing your image file names



  

Things I Didn't Cover

● Speed issues
– sometimes much slower than human testers

– sometimes much faster than human testers

● writing a wrapper to launch scripts and handle 
return values

● setting the match threshold for imagery
– default is 70%

● installing Sikuli



  

References

● Sikuli Project Home

– http://groups.csail.mit.edu/uid/sikuli/

● Sikuli API reference

– http://sikuli.org/trac/wiki/reference-0.10

● Slides from this and my other talks

– http://bob.igo.name/?s=slides

● Catherine Devlin's Sikuli talk

– http://catherinedevlin.pythoneers.com/presentations/sikuli/sikuli.html

● Sikuli import workaround discussion

– https://answers.launchpad.net/sikuli/+faq/1114

● Sikuli tickets

– https://bugs.launchpad.net/sikuli

● OpenCV

– http://opencv.willowgarage.com/wiki/
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