

Linux 101

 A Brief History of Linux
 Basic Concepts and Terminology
 Text Editors
 Finding Documentation
 Basic Shell Usage
 Network Tasks
 Package Management
 Administer Linux from Windows
 Introduction to Intermediate Topics

A Brief History of Linux

 Linux has a HUGE
family tree
http://futurist.se/gldt/

 Why is that?
 How do they differ?

A Brief History of Linux

 RedHat's branch

Basic Concepts and Terminology
 CaSe senSITiviTy

 command is not the same as Command or COMMAND

 first commands: ls (list directory contents), cd (change

directory), pwd (print working directory)

 Home Directories, $HOME, and ~
 Paths, filenames, and pathnames

 /home/igo/ vs file.txt vs /home/igo/file.txt

 Special directories . and ..
 Absolute vs Relative Paths

 /home/igo/file.txt vs ./file.txt vs
../igo/file.txt

Hands On #1
 Open a shell (aka terminal, or xterm) on your

computer and type echo $HOME Are you in $HOME
now?

 Using full paths, change directories to /tmp.

 Using full paths, go back to your home directory.
 Using a relative path, change directories to /home.

 Using a relative path, enter your home directory.
 What files and directories can you find in your home

directory?

Basic Concepts and Terminology
 File Permissions, Owner, and Group

 Who can read, write, or execute a file?
 Running ls ­l on a file shows something like this:

 ­rwxr­xr­­ 1 igo igo 25 2007­08­22 10:54 tmp

 The file user (owner) is shown in the third column. The
group to which the file belongs is shown in the fourth
column. Permissions for the owner, group, and other
users are listed in the first column:

 First triplet (rwx) is the permissions of the file's user (owner). Second
triplet (r­x) is the group's permissions. Third triplet (r­­) is the
permissions of any other users.

 Someone trying to work with the file gets the most-permissive set of
permissions for which they qualify.

 r allows the file to be read; w allows the file to be (over)written; x allows
the file to be executed.

Basic Concepts and Terminology
 Directory Permissions, Owner, and Group

 Who can see inside, write in, or list the contents of a
directory?

 Running ls ­l on a directory shows something like this:
 drwxr­xr­­ 1 igo igo 4096 2007­08­22 10:54 dir

 Everything works the same as files, except:
 r allows the directory contents to be seen; w allows

the directory to accept new files; x allows someone
to enter the directory.

Basic Concepts and Terminology
 The Power of root

 The root account can override any permissions on local
filesystems.

Text Editors

 There are many options, but these are the
common ones:

 nano, emacs, vi
 nano and emacs provide a UI; vi does not

 vi is always present; nano usually is; emacs often
has to be installed

 nano is easiest to learn, followed by emacs, and
then vi

 Is there such a thing as the best editor?
 Yes. And there are several best editors.

Finding Documentation
 man

 short for manual

 e.g. man vi

 info
 e.g. info vi

 http://google.com
 built-in
 books

 paper (relatively cheap, but not updatable)
 Safari Books Online: http://safari.oreilly.com/

(expensive, but updated regularly)

http://safari.oreilly.com/

Hands On #2

 Using the free, offline methods listed
previously, find documentation that shows you
how to do things in emacs and nano.

 Think about when might you use each source,
including books.

BREAK

 15-minute break

Basic Shell Usage

 Common Commands
 cp source target

 copy a file or directory to another location and/or name.

 mv source target
 move a file or directory to another location and/or name.

 rm target
 remove (delete) a file or directory.
 Use parameters carefully!
 Be very careful when root.
 No trashcan or recycling bin with rm!
 Use ls to test rm commands.

Hands On #3

 Use a text editor to create a file named
~/handson1.txt that contains the following
lines, then exit the editor:

user=skippy
password=perklang
home=/home/skippy
realname=Skippy Perklang

 When you are done, remove the file and re-
create it using a different editor, repeating until
you have used all the editors. Do not delete the
file that you created with the final editor.

Hands On #4

 Skippy has legally changed his first name to
Herbert. Copy ~/handson1.txt to
~/handson2.txt, then choose an editor to
change any instances of Skippy or skippy in
~/handson2.txt to Herbert or herbert,
as appropriate.

 When you are done, re-copy
~/handson1.txt to ~/handson2.txt and
use a different editor for the task.

 Repeat until you have used all the editors listed
earlier.

Basic Shell Usage

 mkdir target
 makes a directory.

 rmdir target
 removes an empty directory. (Use rm ­r to

remove non-empty directories.)

 ln target source
 Creates a link to a real file or directory. Most

common usage is ln ­s target source

Hands On #5
 Make a directory called
~/handson3/sub1/sub2/sub3/sub4.

 While in ~/handson3, produce a recursive directory
listing. (Learn how with man ls.)

 Create a link from ~/handson3/link to
~/handson3/sub1/sub2. If you cd into link, do
you end up in sub2?

 List the contents of ~/handson3 in a way that
shows that link is a link.

 Remove sub4. Then remove sub2 and all
directories below it. Show how this affects link.

Basic Shell Usage
 chmod

 changes mode (permissions) of a file or directory.

 chgrp
 changes group of a file or directory.

 su
 Logs you in as another user, often root (the superuser).

 sudo
 Runs commands with temporary root permissions (i.e. do

things as superuser).

 whoami
 Displays which user the shell belongs to.

Hands On #6
 Without logging in as the root user, create a directory

called ~/handson3/root­owned belonging to
root and in root's default group.

 Make your user account the owner of the directory.
 Change the group to be your user's default group.

 hint: You can use ls ­l ~ to learn your default group.

 Change the permissions on the directory so that only
the members of the group can enter the directory.

 Log in as root and see what username you have.

 Without logging in as root, run the same command
you used above with root permissions.

Hands On #7
 Log in as the root user and create a directory called
~/handson3/root­owned belonging to root and
in root's default group.

 Change the owner to be your user account.
 Change the group to be your user's default group.

 hint: You can use ls ­l ~ to learn your default group.

 Change the permissions on the directory so that only
members of the group can enter the directory.

Basic Shell Usage
 which

 which file : Which executable named file will be run if
you type file in a shell?

 updatedb and locate
 Lets you build a file location table and search it quickly.

 grep
 Find what you want amongst a bunch of text, e.g. grep
pattern file or ls | grep file (*)

 cat, more, and less
 Different ways to look at a file without an editor.
 Example: less file

(*) That strange vertical line will be explained later.

Hands On #8
 There is a file called
hands­on­5­instructions.txt
on your laptop. Once you find it, read it in three
different ways to find your next set of instructions.

Basic Shell Usage
 last

 See recent logins, shutdowns, reboots.

 history
 See all your previous shell commands.

 who and w
 Who has a shell on the system? What are they running?

 ps / top
 Get a list of running processes.

 fuser
 While pronounced a bit like an insult, it really isn't.
 It tells you what processes are users of a file.

Hands On #9
 What are some of the recent commands you have

run, in order?
 Is anyone else logged into your computer?
 Who has been logged into your computer in the

past?
 What processes are currently ”using” your home

directory?

LUNCH

 60 minute lunch

Network
 ifup / ifdown : Turn network devices on or off.

 ifconfig : Check or set network parameters.

 ping : See if another networked system is up.

 ssh
 Think: supercharged, encrypted telnet
 Remotely administer any Linux system from another.

 scp
 Think: supercharged, encrypted ftp
 We'll get to it later.

 telnet : check open ports, e.g. telnet host port

Network
 GUIs

 The GUI equivalent of ifup/ifdown and ifconfig:
System -> Administration -> Network launches the
Network Configuration tool in Fedora. From the CLI, you
can run it as system­config­network­gui

Network
 ping and ssh don't exactly need GUIs, but there

may be some out there.
 telnet doesn't need a GUI for the purpose of

checking open ports.

Network
 scp's GUI in Fedora is essentially konqueror using

the fish:// protocol, which connects to another
UNIX system over SSH. URL Syntax:
fish://user@host/directory

 You can copy files between konqueror windows or
between konqueror tabs, just like you would when
using konqueror as a local file manager.

Hands On #10-1
 Provide your IP address to your lab partner. Each of

you will ping the other's computer and then log into
it securely and remotely using the CLI.

 Did the login proceed smoothly?
 Launch an xterm on your lab partner's computer

that displays on yours. How do you know it's not
really running on your computer?

 Using software only, one of you should disconnect
your computer from the network.

 Observe the behavior of both computers after one is
no longer on the network.

Hands On #10-2
 Restore the network connection. Did you happen to

do it in time to save any remote connections, or did
they drop?

 Log in again remotely. Did the login proceed
smoothly?

Package Management
 CLI

 RPM (RedHat Package Manager) : Very low-level
 Be careful. Many distros use RPMs, but not all RPMs are

compatible with Fedora.
 YUM (Yellowdog Updater, Modified) : Wrapper for RPM

 http://en.wikipedia.org/wiki/Yellow_dog_Updater%2C_Modified

 GUI
 Fedora-based distributions

use pirut, aka Package
Manager. Essentially a
GUI wrapper for YUM.

 Applications ->
Add/Remove Software

http://en.wikipedia.org/wiki/Yellow_dog_Updater%2C_Modified

Hands On #11

 Using each of the methods described, get a list
of installed packages that have the text xorg in
them.

 Using only the wrappers described, show how
you would remove the emacs package, but do
not actually attempt it.

 Using only the wrappers described, show how
you would install a new package and its
dependencies, but do not actually attempt it.

BREAK

 15-minute break

Administer Linux from Windows
 putty

 ssh for Windows
 http://www.chiark.greenend.org.uk/
~sgtatham/putty/

 WinSCP
 scp for Windows
 http://winscp.net

 cygwin
 Lets you run remote Linux applications and display

them in Windows. It doesn't always work.

http://www.chiark.greenend.org.uk/

Introduction to Intermediate
Topics

 $PATH
 A colon-separated list of directories where your shell looks

for executable files.
 You may want to add directories to $PATH for 3rd-party

software that installs in nonstandard locations (e.g.
java).

 echo
 Actually, a basic command, but often only needed for

more involved reasons. echo will, among other things,
tell you the value of any shell variable, like $HOME or
$PATH.

Hands On #12
 Open a new xterm and see what your $PATH is:

 echo $PATH

 Set your $PATH there to nothing:
 export PATH=””

 Try to run ls. It's gone away!

 Can you still run ls in your old xterm?

 Add an arbitrary path to your empty $PATH :
 export PATH=”/some/dir”

 Use a command listed above to check its value.
 Close the new xterm that you opened.

Introduction to Intermediate
Topics

 backups
 scp

 e.g. to do a full copy of localdir to remotehost,
 scp ­r /my/localdir user@remotehost:/directory/

 rsync
 Uses ssh/scp by default to synchronize (backup) files between

locations, either locally or remotely.
 e.g. to do a full or incremental copy of localdir to remotehost,

deleting any files on remotehost that have been deleted in
localdir:

 rsync ­avz –delete /my/localdir user@remotehost:/directory/

Hands On #13

 Use scp to copy the contents of ~/.nautilus
to /tmp on your lab partner's computer.

 Do it again with rsync.

 Was anything different the second time using
rsync?

 Do the same with scp.

Introduction to Intermediate
Topics

 keychain
 Helps automate ssh logins by using pre-shared

keys between systems.
 Convenience vs Security
 http://www.ibm.com/developerworks/linux/library/l­keyc.html

 http://www.ibm.com/developerworks/linux/library/l­keyc2/

http://www.ibm.com/developerworks/linux/library/l-keyc.html
http://www.ibm.com/developerworks/linux/library/l-keyc2/

Introduction to Intermediate
Topics

 To set it up, do the following for each user, on the
server:

 Login as user
 ssh­keygen ­t dsa ­b 1024 ­f ~/.ssh/id_dsa
 Enter a passphrase for the key.
 cat ~/.ssh/id_dsa.pub >>
~/.ssh/authorized_keys

 chmod go­rw ~/.ssh/authorized_keys

Introduction to Intermediate
Topics

 Copy ~/.ssh/id_dsa* from the server to the
client.

 e.g. scp ~/.ssh/id_dsa*
username@clientbox:/home/username/.ssh/

 Next, on the client system, make sure keychain is
installed (it is on your classroom computer), and
make the following additions to the user's .bashrc:

 keychain $HOME/.ssh/id_dsa
 . $HOME/.keychain/${HOSTNAME}­sh

 Log out and log back in on the client computer to
activate keychain.

Hands On #14

 Set up a keychain-based login to your lab
partner's computer.

 Verify that it works without a password once
you enter your passphrase on your local
computer.

 Once verified, repeat the previous backup
exercise with rsync. Now you don't have to
enter your password for your account on your
lab partner's computer.

BREAK

 10-minute break

Introduction to Intermediate
Topics

 Advanced grep options
 You can write regular expressions to do pattern-based

grepping.
 Learning regular expressions completely can take weeks.

A good place to start: http://www.regular­
expressions.info/

 Short examples:
 grep ­e ".ob..go" /etc/passwd

igo:x:1000:1000:Bob Igo,,,:/home/igo:/bin/bash

 grep ­e "Igo.*bash" /etc/passwd

igo:x:1000:1000:Bob Igo,,,:/home/igo:/bin/bash

Introduction to Intermediate
Topics

 Chaining shell commands
 The | character is referred to as pipe in Linux. Piping

output from one command to another command's input is
common. Some examples:

 ps aux | grep term | less

 cat ~/handson1.txt | grep home

 < and > can be used to redirect input or output to from or
to a file, overwriting any previous contents. Some
examples:

 ps aux | grep term > terms­running.txt

 cat ~/handson1.txt | grep home > homes­found­in­handson1.txt

 >> can be used to redirect output to a file, adding to its
previous contents. Examples are the same as above, but
with >> instead of >.

Hands On #15

 Get a list of the previous commands you have
run in your shell that contain the text:

tmp

and put them into the file ~/tmps.txt

 Now repeat the above, but add to
~/tmps.txt instead of overwrite it.

Introduction to Intermediate
Topics

 shell scripting
 A shell script is a collection of shell commands. They

range from the trivial to the complicated.

 system startup scripts
 Shell scripts that regulate how your system starts up.

Distros like Fedora store them in /etc/init.d/
 Basically, when your system boots, scripts under
/etc/init.d/ start services that have been configured
to run. For example, all the server processes that you
need for K12LTSP are run for you this way.

 If you want to manually stop, start, or restart one of these
services, run /etc/init.d/scriptname with no
parameters to see your options.

Introduction to Intermediate
Topics

 find
 "I don't know where I saved my OpenOffice
document, but I did it yesterday after
lunch." -- Joe User

 find could get its own full-day course. Here's a basic
example that you can extend or modify as needed:

find /some/directory ­name 'pattern' ­type f ­exec grep greppattern {} \; ­print

 This searches in and under /some/directory for a
regular file (­type f) named pattern (­name
'pattern'). If it finds it, it will execute a grep for text
that matches greppattern (­exec grep
greppattern {} \;) and finally print the name of the
file (­print).

Introduction to Intermediate
Topics

 ps
 See what processes are running.

 kill signal PID
 Stop (or, ironically, restart) a process with Process ID
PID. Examples:

 kill ­1 PID : kill, then start the process with Process ID PID
 kill PID : kill the process
 kill ­9 PID : kill the process a lot

 mount and umount
 Mount and unmount filesystems.
 Either by hand or invoking pre-defined shortcuts in
/etc/fstab

Conclusion
 That was a lot of information in a relatively short

amount of time.
 Don't try to memorize the details at this stage. The

concepts are more important.
 As you implement your new knowledge, use this

presentation as a reference on what can be done.
 Remember: There are lots of ways to do the same

thing.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

